Validation of Climate Model Output using Bayesian Statistical Methods
نویسندگان
چکیده
The growing interest in and emphasis on high spatial resolution estimates of future climate has demonstrated the need to apply regional climate models (RCMs) to that problem. As a consequence, the need for validation of these models, an assessment of how well an RCM reproduces a known climate, has also grown. Validation is often performed by comparing RCM output to gridded climate datasets and/or station data. The primary disadvantage of using gridded climate datasets is that the spatial resolution is almost always different and generally coarser than climate model output. We have used a Bayesian statistical model derived from observational data to validate RCM output. We used surface air temperature (SAT) data from 109 observational stations in California, all with records of approximately 50 years in length, and created a statistical model based on this data. The statistical model takes into account the elevation of the station, distance from coastline, and the NOAA climate region in which the station resides. Analysis indicates that the statistical model provides reliable estimates of the mean monthly SAT at any given station. In our method, the uncertainty in the estimates produced by the statistical model are directly determined by obtaining probability density functions for predicted SATs. This statistical model is then used to estimate average SATs corresponding to each of the climate model gridcells. These estimates are compared to the output of the RCM to assess how well the RCM matches the observed climate as defined by the statistical model. Overall, the match between the RCM output and the statistical model is good with some deficiencies likely due the representation of topography in the RCM.
منابع مشابه
A Bayesian posterior predictive framework for weighting ensemble regional climate models
We present a novel Bayesian statistical approach to computing model weights in climate change projection ensembles in order to create probabilistic projections. The weight of each climate model is obtained by weighting the current day observed data under the posterior distribution admitted under competing climate models. We use a linear model to describe the model output and observations. The a...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملاستفاده از دادههای اقلیمی جهانی برای بازسازی خلأهای آماری دادههای دما و بارش (مطالعۀ موردی: ایستگاههای حوزۀ آبخیز خانمیرزا)
Introduction: Due to importance of data quality, issues relating to filling the missing data has found a great deal of interest. Regeneration methods for missing data can be classified into two kinds of classical and modern categories. Application of statistical methods such as relationship with nearby stations and approaches on the base of hydrological, climatological or physiographical simila...
متن کاملEvaluate the performance of SDSM model in different station and predict climate variables for future
According to the fourth report from the IPCC was confirmed climate change and its impacts on drought, floods, health problems and food shortages. Therefore, understanding of how climate change could be important in the management of resources, especially water resources management. Atmosphere-Ocean Global Circulation Models (AOGCM) are tools for predicting the future climate variables and it mu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005